2023 Annual Drinking Water Quality Report TOWN OF DALLAS

Water System Number: 01-36-065

This report contains very important information about your drinking water. Translate it or talk to someone who understands it well.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien.

We are pleased to present to you this year's Annual Drinking Water Quality Report. This report is a snapshot of last year's water quality. Included are details about your source(s) of water, what it contains, and how it compares to standards set by regulatory agencies. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water and to providing you with this information because informed customers are our best allies. If you have any questions about this report or concerning your water, please contact Josh Lay at (704) 922-1309. We want our valued customers to be informed about their water utility. If you want to learn more, please attend any of our regularly scheduled meetings. They are held at 2nd Tuesday of the month at 6:30pm

What EPA Wants You to Know

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. [Name of Utility] is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Drinking water sources, including tap and bottled water, come from rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water moves through the environment, it can dissolve minerals and radioactive material, and pick up contaminants from animal or human activities. Potential contaminants include:

- Microbial contaminants: Viruses and bacteria from sewage, septic systems, livestock, and wildlife.
- Inorganic contaminants: Salts and metals from natural sources, stormwater runoff, wastewater discharges, oil and gas production, mining, and farming.
- Pesticides and herbicides: From agriculture, stormwater runoff, and residential use.
- Organic chemical contaminants: Synthetic and volatile chemicals from industrial processes, petroleum production, gas stations, stormwater runoff, and septic systems.
- Radioactive contaminants: From natural sources and activities like oil and gas production and mining.

The EPA regulates tap water to limit these contaminants, while the FDA sets similar standards for bottled water to ensure public health protection.

When You Turn on Your Tap, Consider the Source

Source Water Assessment Program (SWAP) Results

The North Carolina Department of Environmental Quality (DEQ), Public Water Supply (PWS) Section, Source Water Assessment Program (SWAP) conducted assessments for all drinking water sources across North Carolina. The purpose of the assessments was to determine the susceptibility of each drinking water source (well or surface water intake) to Potential Contaminant Sources (PCSs). The results of the assessment are available in SWAP Assessment Reports that include maps, background information and a relative susceptibility rating of Higher, Moderate or Lower.

The relative susceptibility rating of each source for TOWN OF DALLAS was determined by combining the contaminant rating (number and location of PCSs within the assessment area) and the inherent vulnerability rating (i.e., characteristics or existing conditions of the well or watershed and its delineated assessment area). The assessment findings are summarized in the table below:

Susceptibility of Sources to Potential Contaminant Sources (PCSs)

Source Name	Susceptibility Rating	SWAP Report Date	
S FORK CATAWBA RVER	Higher	September 2020	

The complete SWAP Assessment report for TOWN OF DALLAS may be viewed on the Web at: https://www.ncwater.org/?page=600 Note that because SWAP results and reports are periodically updated by the PWS Section, the results available on this website may differ from the results that were available at the time this CCR was prepared. If you are unable to access your SWAP report on the web, you may mail a written request for a printed copy to: Source Water Assessment Program – Report Request, 1634 Mail Service Center, Raleigh, NC 27699-1634, or email requests to swap@deg.nc.gov. Please indicate your

Report Request, 1634 Mail Service Center, Raleigh, NC 27699-1634, or email requests to swap@deq.nc.gov. Please indicate your system name, number, and provide your name, mailing address and phone number. If you have any questions about the SWAP report, please contact the Source Water Assessment staff by phone at (919) 707-9098.

It is important to understand that a susceptibility rating of "higher" <u>does not</u> imply poor water quality, only the system's potential to become contaminated by PCSs in the assessment area.

Help Protect Your Source Water

Protection of drinking water is everyone's responsibility.

You can help protect your community's drinking water source(s) in several ways: (examples: dispose of chemicals properly; take used motor oil to a recycling center, volunteer in your community to participate in group efforts to protect your source, etc.).

Violations that Your Water System Received for the Report Year

During 2023, or during any compliance period that ended in 2023, we received a <u>TTHM</u> violation that covered the time period of <u>1</u>st <u>quarter of 2023</u>]. We are/have <u>modified tank operation and changed flushing operations</u>] to assure this does not happen again.

IMPORTANT INFORMATION ABOUT YOUR DRINKING WATER

Violation Awareness Date: 2-22-23

We are required to monitor your drinking water for specific contaminants on a regular basis. Results of regular monitoring are an indicator of whether or not our drinking water meets health standards. During the compliance period specified in the table below, we did not complete all monitoring or testing for the contaminants listed and therefore cannot be sure of the quality of your drinking water during that time.

	CONTAMINANT GROUP**	FACILITY ID NO./ SAMPLE POINT ID	COMPLIANCE PERIOD BEGIN DATE	NUMBER OF SAMPLES/ SAMPLING FREQUENCY	WHEN SAMPLES WERE TAKEN (Returned to Compliance)
ſ	26 OF 26 SOC	T01 / B01	1/1/2020 – 12/31/2022	2 PER / 3 YEAR	

^{**}Delete the contaminant listings below that do not apply to your violations.

(SOC) – Synthetic Organic Chemicals/Pesticides – include 2,4-D, 2,4,5-TP (Silvex), Alachlor, Atrazine, Benzo(a)pyrene, Carbofuran, Chlordane, Dalapon, Di(2-ethylhexyl)adipate, Di(2-ethylhexyl)phthalate, Dibromochloropropane (DBCP), Dinoseb, Endrin, Ethylene dibromide (EDB), Heptachlor, Heptachlor Epoxide, Hexachlorobenzene, Hexachlorocyclopentadiene, Lindane, Methoxychlor, Oxamyl(vydate), PCBs, Pentachlorophenol, Picloram, Simazine, Toxaphene.

What should I do? There is nothing you need to do at this time.

<u>What is being done?</u> This was caused by a lab error where all the samples where not analyzed by the commercial lab. Information was not relayed in time to resample. Commercial lab will be monitored closer to maintain that samples are completed on time and accurately reported to the state.

Please share this information with all the other people who drink this water, especially those who may not have received this notice directly (for example, people in apartments, nursing homes, schools, and businesses). You can do this by posting this notice in a public place or distributing copies by hand or mail.

IMPORTANT INFORMATION ABOUT YOUR DRINKING WATER

Violation Awareness Date: 10/01/2023

We are required to monitor your drinking water for specific contaminants on a regular basis. Results of regular monitoring are an indicator of whether or not our drinking water meets health standards. During the compliance period specified in the table below, we ['did not monitor or test' or 'did not complete all monitoring or testing'] for the contaminants listed and therefore cannot be sure of the quality of your drinking water during that time.

CONTAMINANT GROUP**	FACILITY ID NO./ SAMPLE POINT ID	COMPLIANCE PERIOD BEGIN DATE	NUMBER OF SAMPLES/ SAMPLING FREQUENCY	WHEN SAMPLES WERE TAKEN (Returned to Compliance)
CARBON TOTAL	NC036065	7/1/2023 – 9/30/2023	1 QUARTERLY	
ALKALINITY, TOTAL	NC0136065	7/1/2023 — 9/30/2023	1 QUARTERLY	

(AS) Asbestos - includes testing for Chrysotile, Amphibole and Total Asbestos.

(BA) Total Coliform Bacteria – includes testing for Total Coliform bacteria and Fecal/E.coli bacteria. Testing for Fecal/E.coli bacteria is required if total coliform is present in the sample.

(BB) Bromate/Bromide - includes testing for Bromate and/or Bromide.

(CD) Chlorine Dioxide/Chlorite – includes testing for Chlorine Dioxide and/or Chlorite.

(DI) Disinfectant Residual must be tested with the collection of each compliance bacteriological sample, at the same time and site.

Fecal Indicators - includes E.coli, enterococci or coliphage.

(HAA5)- Haloacetic Acids - include Monochloroacetic Acid, Dichloroacetic Acid, Trichloroacetic Acid, Monobromoacetic Acid, Dibromoacetic Acid, ClOC) Inorganic chemicals - include Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cyanide, Fluoride, Iron, Manganese, Mercury, Nickel, pH, Selenium, Sodium, Sulfate, and Thallium.

(LC) Lead and Copper are tested by collecting the required number of samples and testing each of the samples for both lead and copper.

(NT) Nitrate/ (NI) Nitrite - includes testing for nitrate and/or nitrite.

(RA) Radionuclides - includes Gross Alpha, Radon, Uranium, Combined Radium, Radium 226, Radium 228, Potassium 40 (Total), Gross Beta, Tritium, Strontium 89, Strontium 90, Iodine 131, and Cesium 134.

(SOC) – Synthetic Organic Chemicals/Pesticides – include 2,4-D, 2,4,5-TP (Silvex), Alachlor, Atrazine, Benzo(a)pyrene, Carbofuran, Chlordane, Dalapon, Di(2-ethylhexyl)adipate, Di(2-ethylhexyl)phthalate, Dibromochloropropane (DBCP), Dinoseb, Endrin, Ethylene dibromide (EDB), Heptachlor, Heptachlor Epoxide, Hexachlorobenzene, Hexachlorocyclopentadiene, Lindane, Methoxychlor, Oxamyl(vydate), PCBs, Pentachlorophenol, Picloram, Simazine, Toxaphene.

(TOC) - Total Organic Carbon - includes testing for Alkalinity, Dissolved Organic Carbon (DOC), Total Organic Carbon (TOC) and Ultraviolet Absorption 254 (UV254). Source water samples must be tested for both TOC and Alkalinity. Treated water samples must be tested for TOC. Source water samples and treated water samples must be collected on the same day.

(TTHM) - Total Trihalomethanes - include Chloroform, Bromoform, Bromodichloromethane, and Dibromochloromethane.

(VOC) - Volatile Organic Chemicals - include 1,2,4-Trichlorobenzene, Cis-1,2-Dichloroethylene, Xylenes (Total), Dichloromethane, o-Dichlorobenzene, p-Dichlorobenzene, Vinyl Chloride, 1,1,-Dichloroethylene, Trans-1,2,-Dichloroethylene, 1,2-Dichloroethane, 1,1,1-Trichloroethane, Carbon Tetrachloride, 1,2-Dichloropropane, Trichloroethylene, 1,1,2-Trichloroethane, Tetrachloroethylene, Chlorobenzene, Benzene, Toluene, Ethylbenzene, and Styrene.

(WQP) Water Quality Parameters (for Lead and Copper Rule) - includes Calcium, Orthophosphate (as PO₄), Silica, Conductivity, pH, Alkalinity and Water Temperature.

What should I do? There is nothing you need to do at this time.

What is being done? [Samples were collected in the next quarter

Please share this information with all the other people who drink this water, especially those who may not have received this notice directly (for example, people in apartments, nursing homes, schools, and businesses). You can do this by posting this notice in a public place or distributing copies by hand or mail.

IMPORTANT INFORMATION ABOUT YOUR DRINKING WATER

Violation Awareness Date: 3/30/2023

We are required to monitor your drinking water for specific contaminants on a regular basis. Results of regular monitoring are an indicator of whether or not our drinking water meets health standards. During the compliance period specified in the table below, we ['did not monitor or test' or 'did not complete all monitoring or testing'] for the contaminants listed and therefore cannot be sure of the quality of your drinking water during that time.

CONTAMINANT GROUP**	FACILITY ID NO./ SAMPLE POINT ID	COMPLIANCE PERIOD BEGIN DATE	NUMBER OF SAMPLES/ SAMPLING FREQUENCY	WHEN SAMPLES WERE TAKEN (Returned to Compliance)
MCL. LRAA	NC0136065	01/01/2023 — 03/21/2023	1 QUARTERLY	

(AS) Asbestos - includes testing for Chrysotile, Amphibole and Total Asbestos.

(BA) Total Coliform Bacteria – includes testing for Total Coliform bacteria and Fecal/E.coli bacteria. Testing for Fecal/E.coli bacteria is required if total coliform is present in the sample.

(BB) Bromate/Bromide - includes testing for Bromate and/or Bromide.

(CD) Chlorine Dioxide/Chlorite – includes testing for Chlorine Dioxide and/or Chlorite.

(DI) Disinfectant Residual must be tested with the collection of each compliance bacteriological sample, at the same time and site.

Fecal Indicators - includes E.coli, enterococci or coliphage.

(HAA5)- Haloacetic Acids - include Monochloroacetic Acid, Dichloroacetic Acid, Trichloroacetic Acid, Monobromoacetic Acid, Dibromoacetic Acid, ClOC) Inorganic chemicals - include Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cyanide, Fluoride, Iron, Manganese, Mercury, Nickel, pH, Selenium, Sodium, Sulfate, and Thallium.

(LC) Lead and Copper are tested by collecting the required number of samples and testing each of the samples for both lead and copper.

(NT) Nitrate/ (NI) Nitrite - includes testing for nitrate and/or nitrite.

(RA) Radionuclides - includes Gross Alpha, Radon, Uranium, Combined Radium, Radium 226, Radium 228, Potassium 40 (Total), Gross Beta, Tritium, Strontium 89, Strontium 90, Iodine 131, and Cesium 134.

(SOC) – Synthetic Organic Chemicals/Pesticides – include 2,4-D, 2,4,5-TP (Silvex), Alachlor, Atrazine, Benzo(a)pyrene, Carbofuran, Chlordane, Dalapon, Di(2-ethylhexyl)adipate, Di(2-ethylhexyl)phthalate, Dibromochloropropane (DBCP), Dinoseb, Endrin, Ethylene dibromide (EDB), Heptachlor, Heptachlor Epoxide, Hexachlorobenzene, Hexachlorocyclopentadiene, Lindane, Methoxychlor, Oxamyl(vydate), PCBs, Pentachlorophenol, Picloram, Simazine, Toxaphene.

(TOC) - Total Organic Carbon - includes testing for Alkalinity, Dissolved Organic Carbon (DOC), Total Organic Carbon (TOC) and Ultraviolet Absorption 254 (UV254). Source water samples must be tested for both TOC and Alkalinity. Treated water samples must be tested for TOC. Source water samples and treated water samples must be collected on the same day.

(TTHM) - Total Trihalomethanes - include Chloroform, Bromodichloromethane, and Dibromochloromethane.

(VOC) - Volatile Organic Chemicals - include 1,2,4-Trichlorobenzene, Cis-1,2-Dichloroethylene, Xylenes (Total), Dichloromethane, o-Dichlorobenzene, P-Dichlorobenzene, Vinyl Chloride, 1,1,-Dichloroethylene, Trans-1,2,-Dichloroethylene, 1,2-Dichloroethane, 1,1,1-Trichloroethane, Carbon Tetrachloride, 1,2-Dichloropropane, Trichloroethylene, 1,1,2-Trichloroethane, Tetrachloroethylene, Chlorobenzene, Benzene, Toluene, Ethylbenzene, and Styrene.

(WQP) Water Quality Parameters (for Lead and Copper Rule) - includes Calcium, Orthophosphate (as PO₄), Silica, Conductivity, pH, Alkalinity and Water Temperature.

What should I do? There is nothing you need to do at this time.

What is being done? Changes in operation of tanks and flushing. Water age causing this issue.

Please share this information with all the other people who drink this water, especially those who may not have received this notice directly (for example, people in apartments, nursing homes, schools, and businesses). You can do this by posting this notice in a public place or distributing copies by hand or mail.

IMPORTANT INFORMATION ABOUT YOUR DRINKING WATER

Violation	Awareness	Date:	

We are required to monitor your drinking water for specific contaminants on a regular basis. Results of regular monitoring are an indicator of whether or not our drinking water meets health standards. During the compliance period specified in the table below, we ['did not monitor or test' or 'did not complete all monitoring or testing'] for the contaminants listed and therefore cannot be sure of the quality of your drinking water during that time.

CONTAMINANT GROUP**	FACILITY ID NO./ SAMPLE POINT ID	COMPLIANCE PERIOD BEGIN DATE	NUMBER OF SAMPLES/ SAMPLING FREQUENCY	WHEN SAMPLES WERE TAKEN (Returned to Compliance)
LEAD CONSUMER NOTICE	NC0136065	01/01/2023 — 03/07/2023	3 YRS	

(AS) Asbestos - includes testing for Chrysotile, Amphibole and Total Asbestos.

(BA) Total Coliform Bacteria – includes testing for Total Coliform bacteria and Fecal/E.coli bacteria. Testing for Fecal/E.coli bacteria is required if total coliform is present in the sample.

(BB) Bromate/Bromide - includes testing for Bromate and/or Bromide.

(CD) Chlorine Dioxide/Chlorite – includes testing for Chlorine Dioxide and/or Chlorite.

(DI) Disinfectant Residual must be tested with the collection of each compliance bacteriological sample, at the same time and site.

Fecal Indicators - includes E.coli, enterococci or coliphage.

(HAA5)- Haloacetic Acids - include Monochloroacetic Acid, Dichloroacetic Acid, Trichloroacetic Acid, Monobromoacetic Acid, Dibromoacetic Acid, ClOC) Inorganic chemicals - include Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cyanide, Fluoride, Iron, Manganese, Mercury, Nickel, pH, Selenium, Sodium, Sulfate, and Thallium.

(LC) Lead and Copper are tested by collecting the required number of samples and testing each of the samples for both lead and copper.

(NT) Nitrate/ (NI) Nitrite - includes testing for nitrate and/or nitrite.

(RA) Radionuclides - includes Gross Alpha, Radon, Uranium, Combined Radium, Radium 226, Radium 228, Potassium 40 (Total), Gross Beta, Tritium, Strontium 89, Strontium 90, Iodine 131, and Cesium 134.

(SOC) – Synthetic Organic Chemicals/Pesticides – include 2,4-D, 2,4,5-TP (Silvex), Alachlor, Atrazine, Benzo(a)pyrene, Carbofuran, Chlordane, Dalapon, Di(2-ethylhexyl)adipate, Di(2-ethylhexyl)phthalate, Dibromochloropropane (DBCP), Dinoseb, Endrin, Ethylene dibromide (EDB), Heptachlor, Heptachlor Epoxide, Hexachlorobenzene, Hexachlorocyclopentadiene, Lindane, Methoxychlor, Oxamyl(vydate), PCBs, Pentachlorophenol, Picloram, Simazine, Toxaphene.

(<u>TOC</u>) - <u>Total Organic Carbon</u> - includes testing for Alkalinity, Dissolved Organic Carbon (DOC), Total Organic Carbon (TOC) and Ultraviolet Absorption 254 (UV254). Source water samples must be tested for both TOC and Alkalinity. Treated water samples must be tested for TOC. Source water samples and treated water samples must be collected on the same day.

(TTHM) - Total Trihalomethanes - include Chloroform, Bromodichloromethane, and Dibromochloromethane.

(VOC) - Volatile Organic Chemicals - include 1,2,4-Trichlorobenzene, Cis-1,2-Dichloroethylene, Xylenes (Total), Dichloromethane, o-Dichlorobenzene, P-Dichlorobenzene, Vinyl Chloride, 1,1,-Dichloroethylene, Trans-1,2,-Dichloroethylene, 1,2-Dichloroethane, 1,1,1-Trichloroethane, Carbon Tetrachloride, 1,2-Dichloropropane, Trichloroethylene, 1,1,2-Trichloroethane, Tetrachloroethylene, Chlorobenzene, Benzene, Toluene, Ethylbenzene, and Styrene.

(WQP) Water Quality Parameters (for Lead and Copper Rule) - includes Calcium, Orthophosphate (as PO₄), Silica, Conductivity, pH, Alkalinity and Water Temperature.

What should I do? There is nothing you need to do at this time.

What is being done? Notice was submitted to the customer

Please share this information with all the other people who drink this water, especially those who may not have received this notice directly (for example, people in apartments, nursing homes, schools, and businesses). You can do this by posting this notice in a public place or distributing copies by hand or mail.

Important Drinking Water Definitions:

- o Not-Applicable (N/A) Information not applicable/not required for that particular water system or for that particular rule.
- o *Non-Detects* (*ND*) Laboratory analysis indicates that the contaminant is not present at the level of detection set for the particular methodology used.
- Parts per million (ppm) or Milligrams per liter (mg/L) One part per million corresponds to one minute in two years or a single penny in \$10,000.
- Parts per billion (ppb) or Micrograms per liter (ug/L) One part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.
- Parts per trillion (ppt) or Nanograms per liter (nanograms/L) One part per trillion corresponds to one minute in 2,000,000 years, or a single penny in \$10,000,000,000.
- Parts per quadrillion (ppq) or Picograms per liter (picograms/L) One part per quadrillion corresponds to one minute in 2,000,000,000 years or one penny in \$10,000,000,000.
- o *Picocuries per liter (pCi/L)* Picocuries per liter is a measure of the radioactivity in water.
- Million Fibers per Liter (MFL) Million fibers per liter is a measure of the presence of asbestos fibers that are longer than 10 micrometers.
- o *Nephelometric Turbidity Unit (NTU)* Nephelometric turbidity unit is a measure of the clarity of water. Turbidity in excess of 5 NTU is just noticeable to the average person.
- Variances and Exceptions State or EPA permission not to meet an MCL or Treatment Technique under certain conditions.
- Action Level (AL) The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.
- Treatment Technique (TT) A required process intended to reduce the level of a contaminant in drinking water.
- *Maximum Residual Disinfection Level (MRDL)* The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
- *Maximum Residual Disinfection Level Goal (MRDLG)* The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
- Locational Running Annual Average (LRAA) The average of sample analytical results for samples taken at a particular monitoring location during the previous four calendar quarters under the Stage 2 Disinfectants and Disinfection Byproducts Rule.
- **Running Annual Average (RAA)** The average of sample analytical results for samples taken during the previous four calendar quarters.
- Level 1 Assessment A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.
- Level 2 Assessment A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.
- > Maximum Contaminant Level (MCL) The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
- Maximum Contaminant Level Goal (MCLG) The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Water Quality Data Tables of Detected Contaminants

We routinely monitor for over 150 contaminants in your drinking water according to Federal and State laws. The tables below list all the drinking water contaminants that we <u>detected</u> in the last round of sampling for each particular contaminant group. The presence of contaminants does <u>not</u> necessarily indicate that water poses a health risk. **Unless otherwise noted, the data presented in this table is from testing done January 1 through December 31, 2023.** The EPA and the State allow us to monitor for certain contaminants less than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year. Some of the data, though representative of the water quality, is more than one year old.

REVISED TOTAL COLIFORM RULE:

Microbiological Contaminants in the Distribution System

Contaminant (units)	MCL Violation Y/N	Number of Positive/Present Samples	MCLG	MCL	Likely Source of Contamination
Total Coliform Bacteria (presence or absence)	N/A	N/A	N/A	TT*	Naturally present in the environment
E. coli (presence or absence)	N	0	0	Routine and repeat samples are total coliform-positive and either is <i>E. coli</i> -positive or system fails to take repeat samples following <i>E. coli</i> -positive routine sample or system fails to analyze total coliform-positive repeat sample for <i>E. coli</i> Note: If either an original routine sample and/or its repeat samples(s) are <i>E. coli</i> positive, a Tier 1 violation exists.	Human and animal fecal waste

^{*} If a system collecting fewer than 40 samples per month has two or more positive samples in one month, an assessment is required.

Turbidity*

Contaminant (units)	Treatment Technique (TT) Violation Y/N	Your Water	MCLG	Treatment Technique (TT) Violation if:	Likely Source of Contamination
Turbidity (NTU) - Highest single turbidity measurement	N	NTU	N/A	Turbidity > 1 NTU	
Turbidity (%) - Lowest monthly percentage (%) of samples meeting turbidity limits	N	99%	N/A	Less than 95% of monthly turbidity measurements are ≤0.3 NTU	Soil runoff

^{*} Turbidity is a measure of the cloudiness of the water. We monitor it because it is a good indicator of the effectiveness of our filtration system. The turbidity rule requires that 95% or more of the monthly samples must be less than or equal to 0.3 NTU.

Inorganic Contaminants

Contaminant (units)	Sample Date	MCL Violation Y/N	Your Water	Range Low High	MCLG	MCL	Likely Source of Contamination
Antimony (ppb)	12/19/23	N	N/D	ND	6	6	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder
Arsenic (ppb)	12/19/23	N	ND	ND	0	10	Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production wastes
Barium (ppm)	12/19/23	N	ND	ND	2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
Beryllium (ppb)	12/19/23	N	ND	ND	4	4	Discharge from metal refineries and coal-burning factories; discharge from electrical, aerospace, and defense industries
Cadmium (ppb)	12/19/23	N	ND	ND	5	5	Corrosion of galvanized pipes; erosion of natural deposits; discharge from metal refineries; runoff from waste batteries and paints
Chromium (ppb)	12/19/23	N	ND	ND	100	100	Discharge from steel and pulp mills; erosion of natural deposits
Cyanide (ppm)	12/19/23	N	50	50	200	200	Discharge from steel/metal factories; discharge from plastic and fertilizer factories
Fluoride (ppm)	12/19/23	N	0.380 mg/L	0.380 mg/L	4	4	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
Mercury (inorganic) (ppb)	12/19/23	N	0.4	0.4	2	2	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills; runoff from cropland
Selenium (ppb)	12/19/23	N	ND	ND	50	50	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines
Thallium (ppb)	12/19/23	N	ND	ND	0.5	2	Leaching from ore-processing sites; discharge from electronics, glass, and drug factories

Nitrate/Nitrite Contaminants

^{*} If a system collecting 40 or more samples per month finds greater than 5% of monthly samples are positive in one month, an assessment is required.

Contaminant (units)	Sample Date	MCL Violation Y/N	Your Water	Range Low High	MCLG	MCL	Likely Source of Contamination
Nitrate (as Nitrogen) (ppm)	12/19/23	N	1.20	N/A	10	10	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits

Asbestos Contaminant

Contaminant (units)	Sample Date	MCL Violation Y/N	Your Water	Range Low High	MCLG	MCL	Likely Source of Contamination
Total Asbestos (MFL)					7	7	Decay of asbestos cement water mains; erosion of natural deposits

Contaminant (units)	Sample Date	MCL Violation Y/N	Your Water	Range Low High	MCLG	MCL	Likely Source of Contamination
2,4-D (ppb)	2022	N	ND	ND	70	70	Runoff from herbicide used on row crops
2,4,5-TP (Silvex) (ppb)	2022	N	ND	ND	50	50	Residue of banned herbicide
Alachlor (ppb)	2022	N	ND	ND	0	2	Runoff from herbicide used on row crops
Atrazine (ppb)	2022	N	ND	ND	3	3	Runoff from herbicide used on row crops
Benzo(a)pyrene (PAH) (ppt)	2022	N	ND	ND	0	200	Leaching from linings of water storage tanks and distribution lines
Carbofuran (ppb)	2022	N	ND	ND	40	40	Leaching of soil fumigant used on rice and alfalfa
Chlordane (ppb)	2022	N	ND	ND	0	2	Residue of banned termiticide
Dalapon (ppb)	2022	N	ND	ND	200	200	Runoff from herbicide used on rights of way
Di(2-ethylhexyl) adipate (ppb)	2022	N	ND	ND	400	400	Discharge from chemical factories
Di(2-ethylhexyl) phthalate (ppb)	2022	N	ND	ND	0	6	Discharge from rubber and chemical factories
DBCP [Dibromochloropropane] (ppt)	2022	N	ND	ND	0	200	Runoff/leaching from soil fumigant used on soybeans, cotton, pineapples, and orchards
Dinoseb (ppb)	2022	N	ND	ND	7	7	Runoff from herbicide used on soybeans and vegetables
Endrin (ppb)	2022	N	ND	ND	2	2	Residue of banned insecticide
EDB [Ethylene dibromide] (ppt)	2022	N	ND	ND	0	50	Discharge from petroleum refineries
Heptachlor (ppt)	2022	N	ND	ND	0	400	Residue of banned pesticide
Heptachlor epoxide (ppt)	2022	N	ND	ND	0	200	Breakdown of heptachlor
Hexachlorobenzene (ppb)	2022	N	ND	ND	0	1	Discharge from metal refineries and agricultural chemical factories
Hexachlorocyclo- pentadiene (ppb)	2022	N	ND	ND	50	50	Discharge from chemical factories
Lindane (ppt)	2022	N	ND	ND	200	200	Runoff/leaching from insecticide used on cattle, lumber, gardens
Methoxychlor (ppb)	2022	N	ND	ND	40	40	Runoff/leaching from insecticide used on fruits, vegetables, alfalfa, livestock
Oxamyl [Vydate] (ppb)	2022	N	ND	ND	200	200	Runoff/leaching from insecticide used on apples, potatoes and tomatoes
PCBs [Polychlorinated biphenyls] (ppt)	2022	N	ND	ND	0	500	Runoff from landfills; discharge of waste chemicals
Pentachlorophenol (ppb)	2022	N	ND	ND	0	1	Discharge from wood preserving factories
Picloram (ppb)	2022	N	ND	ND	500	500	Herbicide runoff
Simazine (ppb)	2022	N	ND	ND	4	4	Herbicide runoff

Toxaphene (ppb) 2022	N	ND	ND	0	3	Runoff/leaching from insecticide used on cotton and cattle
----------------------	---	----	----	---	---	--

Volatile Organic Chemical (VOC) Contaminants

Contaminant (units)	Sample Date	MCL Violation Y/N	Your Water	Range Low High	MCLG	MCL	Likely Source of Contamination
Benzene (ppb)	12/21/23	N	ND	ND	0	5	Discharge from factories; leaching from gas storage tanks and landfills
Carbon tetrachloride (ppb)	12/21/23	N	ND	ND	0	5	Discharge from chemical plants and other industrial activities
Chlorobenzene (ppb)	12/21/23	N	ND	ND	100	100	Discharge from chemical and agricultural chemical factories
o-Dichlorobenzene (ppb)	12/21/23	N	ND	ND	600	600	Discharge from industrial chemical factories
p-Dichlorobenzene (ppb)	12/21/23	N	ND	ND	75	75	Discharge from industrial chemical factories
1,2 – Dichloroethane (ppb)	12/21/23	N	ND	ND	0	5	Discharge from industrial chemical factories
1,1 – Dichloroethylene (ppb)	12/21/23	N	ND	ND	7	7	Discharge from industrial chemical factories
cis-1,2-Dichloroethylene (ppb)	12/21/23	N	ND	ND	70	70	Discharge from industrial chemical factories
trans-1,2-Dichloroethylene (ppb)	12/21/23	N	ND	ND	100	100	Discharge from industrial chemical factories
Dichloromethane (ppb)	12/21/23	N	ND	ND	0	5	Discharge from pharmaceutical and chemical factories
1,2-Dichloropropane (ppb)	12/21/23	N	ND	ND	0	5	Discharge from industrial chemical factories
Ethylbenzene (ppb)	12/21/23	N	ND	ND	700	700	Discharge from petroleum refineries
Styrene (ppb)	12/21/23	N	ND	ND	100	100	Discharge from rubber and plastic factories; leaching from landfills
Tetrachloroethylene (ppb)	12/21/23	N	ND	ND	0	5	Discharge from factories and dry cleaners
1,2,4 –Trichlorobenzene (ppb)	12/21/23	N	ND	ND	70	70	Discharge from textile-finishing factories
1,1,1 – Trichloroethane (ppb)	12/21/23	N	ND	ND	200	200	Discharge from metal degreasing sites and other factories
1,1,2 –Trichloroethane (ppb)	12/21/23	N	ND	ND	3	5	Discharge from industrial chemical factories
Trichloroethylene (ppb)	12/21/23	N	ND	ND	0	5	Discharge from metal degreasing sites and other factories
Toluene (ppm)	12/21/23	N	ND	ND	1	1	Discharge from petroleum factories
Vinyl Chloride (ppb)	12/21/23	N	ND	ND	0	2	Leaching from PVC piping; discharge from plastics factories
Xylenes (Total) (ppm)	12/21/23	N	ND	ND	10	10	Discharge from petroleum factories; discharge from chemical factories

Radiological Contaminants

adiological Contaminants									
Contaminant (units)	Sample Date	MCL Violation Y/N	Your Water (RAA)	Range Low High	MCLG	MCL	Likely Source of Contamination		
Alpha emitters (pCi/L) (Gross Alpha Excluding Radon and Uranium)					0	15	Erosion of natural deposits		
Beta/photon emitters (pCi/L)					0	50 *	Decay of natural and man-made deposits		
Combined radium (pCi/L)					0	5	Erosion of natural deposits		
Uranium (pCi/L)					0	20.1	Erosion of natural deposits		

^{*} Note: The MCL for beta/photon emitters is 4 mrem/year. EPA considers 50 pCi/L to be the level of concern for beta particles.

Lead and Copper Contaminants

Contaminant (units)	Sample Date	Your Water (90 th Percentile)	Number of sites found above the AL	MCLG	AL	Likely Source of Contamination
Copper (ppm) (90 th percentile)	9/20/22	ND	0	1.3	AL=1.3	Corrosion of household plumbing systems; erosion of natural deposits
Lead (ppb) (90 th percentile)	9/20/22	ND	0	0	AL=15	Corrosion of household plumbing systems; erosion of natural deposits

Total Organic Carbon (TOC)

Contaminant (units)	TT Violation Y/N	Your Water (lowest RAA)	Range Monthly Removal Ratio Low - High	MCLG	Treatment Technique (TT) violation if:	Likely Source of Contamination
Total Organic Carbon (TOC) Removal Ratio (no units)	N	1.0	1.0 - 2.86	N/A	Removal Ratio RAA <1.00 and alternative compliance criteria was not met	Naturally present in the environment

Disinfectant Residuals Summary

	MRDL Violation Y/N	Your Water (RAA)	Ra Low	nge High	MRDLG	MRDL	Likely Source of Contamination
Chlorine (ppm)	N	1.03	0.03	1.77	4	4.0	Water additive used to control microbes

Total Trihalomethanes (TTHM) and Haloacetic Acids (five) (HAA5)

Contaminant (units)	Year	MCL Violation	Your Water (highest LRAA)		Range		MCL	Likely Source of Contamination
	Sampled	Y/N	(mgnest Extrar)	Low	High			
TTHM (ppb)	2023					N/A	80	Byproduct of drinking water disinfection
BO1			94	51	97			
BO2			87	53	87			
HAA5 (ppb)	2023					N/A	60	Byproduct of drinking water disinfection
BO1			40	34	40			
BO2			43	36	43			

Some people who drink water containing trihalomethanes in excess of the MCL over many years may experience problems with their liver, kidneys, or central nervous systems, and may have an increased risk of getting cancer.

Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulations are warranted.

Unregulated Contaminants

Onregulated Contamina	Inregulated Contaminants										
Contaminant (units)	Sample Date	Your Water (average)	Range Low High								
PFHpA	2023	.0031	0.0031 / 0.0031								
PFHxA	2023	.0082	0.0041 / 0.0082								
PFPaA	2023	.007	0.0039 / 0.0085								
PFBS	2023	.0039	0.0039 / 0.0039								